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Executive Summary 
The objective of the Automated Performance Assessment for After-Action Review project was to mature 

technical capabilities developed by Sandia National Laboratories for automated performance 

assessment to develop a product that could be transitioned to Naval aviation applications.  Prior to this 

project, Sandia had demonstrated the feasibility of the AEMASE (Automated Expert Modeling and 

Student Evaluation) approach through a limited aviation-based demonstration.  The AEMASE approach 

involves a three-step process.  In the first step, individuals of desired levels of expertise demonstrate 

behavior on a simulator or within an instrumented environment.  Second, the data generated through 

these demonstrations provide the input to machine learning algorithms that are used to derive a model 

of expert performance.  Then, during training, real-time data is fed into the model which predicts the 

range of behaviors that would be expected within similar situations.  The behavior of students may be 

compared to these predictions and discrepancies provide the basis for indentifying deficiencies in the 

knowledge or skills of individual students.  These discrepancies are flagged on an after-action instructor 

debrief and allow instructors to focus after-action review on the specific needs of each student.   

The AEMASE approach offers multiple benefits to Naval aviation.   The use of machine learning 

approaches for deriving expert models streamlines the development process reducing costs by largely 

eliminating the costly and time-consuming steps of knowledge engineering required with most expert 

and intelligent tutoring systems.  Second, during training, automated performance assessment provides 

continuous monitoring of students lessening the burden on instructors and allowing instructors to make 

better use of their time and resources. 

Over the course of this four-year project, AEMASE was implemented with the E-2 Enhanced Deployable 

Readiness Trainer (E2EDRT) and automated measures developed to assess the performance of E-2 

Hawkeye Naval Flight Officers.  Laboratory experiments were conducted to first establish the accuracy of 

AEMASE-derived automated measures, as compared to manual graders, and second to demonstrate the 

utility of AEMASE-based automated performance assessment through improved training effectiveness.  

Subsequent work expanded the initial capabilities which were restricted to individual performance and 

employed only behavioral data from machine transactions to address verbal communications as one key 

facet of assessing team performance.  Finally, using data obtained during large-scale joint forces 

exercises, the generalizability and scalability of AEMASE to fleet force-on-force exercises was 

demonstrated.   At the conclusion of the project, the AEMASE capabilities are on track for transition to 

the Navy’s E-2/C program as an upgrade to the E2EDRT. 

  



Background 
Prior to this project, Sandia National Laboratories had shown the feasibility of automated performance 

assessment tools such as the Sandia-developed Automated Expert Modeling and Student Evaluation 

(AEMASE) software.  One technique employed by AEMASE is the grading of student performance by 

comparing their actions to a model of expert behavior.  Models of expert behavior are derived by 

collecting sample data from simulator exercises or other means and then employing machine learning 

techniques to capture patterns of expert performance.  During training, the student behavior is 

compared to the expert model to identify and target training to individual deficiencies.  Another 

technique utilized by AEMASE is the grading of student performance by comparing their actions to 

models of good and/or poor student performance.  Students with good and bad performance are 

identified and machine learning techniques are employed to construct models of these two types of 

performance in the same manner as expert performance.  Student performance from other training 

sessions is then compared to these models to identify and target training to individual deficiencies.  Both 

techniques avoid the costly and time-intensive process of manual knowledge elicitation and expert 

system implementation (Abbott, 2006).   

In a pilot study, AEMASE achieved a high degree of agreement with a human grader (89%) in assessing 

tactical air engagement scenarios (Abbott, 2006). However, the 68 trials assessed utilized only four 

subjects with only three different training scenarios and the range of correct behaviors was quite 

limited.   

Most research into automated student evaluation has been conducted in the context of intelligent 

tutoring systems. Murray (1999) provides a survey of intelligent tutoring systems, while Corbett (2001) 

provides a review of the empirical support for their effectiveness. Jensen, Chen, and Nolan’s (2005) work 

on Combined Arms Command and Control Trainer Upgrade System (CACCTUS) provides one exception. 

This tool analyzes events from training sessions to find causal relationships among student errors and 

undesirable outcomes. The system then applies a set of rules to determine and highlight the correct 

behaviors. This work differs from AEMASE in that AEMASE attempts to learn a model for correct 

behaviors by observing experts, instead of relying on a crafted rule base. Relatively few efforts have 

sought to automatically acquire models of correct behaviors. Anderson, Draper and Peterson (2000) 

used neural networks to create behavioral clones for piloting simulated aircraft, but their work focused 

on personal insights based on examination of neural network models of individual students. AEMASE 

uses its learned models to compare novice and expert behavior automatically. 

Problem 
The U.S. armed services are widely adopting simulation-based training, largely to reduce costs 

associated with live training.  Ideally, instructors would observe each individual within the context of 

team performance and provide instruction based on observed misunderstandings, inefficient task 

execution, ineffective or inappropriate actions and so forth.  However, it is impossible for instructors to 

devote this level of attention and time to each student.  To maximize training efficiency, new 

technologies are required that assist instructors in providing individually-relevant instruction.   



A significant cost in simulation-based training is the workload on human instructors to monitor student 

actions and provide corrective feedback.  For example, the U.S. Navy trains Naval Flight Officers for the 

E2-Hawkeye aircraft using a high-fidelity Weapons Systems Trainer (E2 WST).  Currently this requires a 

separate instructor to observe each student within the context of team performance.  Individualized 

instruction contributes to high training costs.  Intelligent tutoring systems target this need, but they are 

often associated with high costs for knowledge engineering and implementation.   New technologies are 

required that assist instructors in providing individually-relevant instruction. 

Objective 
The objective for this project was to extend technologies for Automated Expert Modeling and Student 

Evaluation (AEMASE) to a platform that is relevant to Naval aviation training, and conduct research to 

establish the accuracy of automated student assessments and the training benefit achievable with this 

technology.  In particular, AEMASE was integrated with the E-2 Hawkeye Enhanced Deployable 

Readiness Trainer (E2EDRT), and development and testing has focused on advancing capabilities for 

training E-2 Naval Flight Officers.  

Approach 
The goal of AEMASE is first to let subject matter experts rapidly create and update their own models of 

normative behavior and then use these models to evaluate student performance automatically (Abbott, 

2006). The system operates in three steps. First, the system must acquire examples of behavior in the 

simulated environment. Next, machine-learning techniques are used to build a model of the 

demonstrated tactics. The system then compares student behaviors in the same task environment to 

the expert model to establish a score. Afterwards, the student and instructor can review the training 

session by interacting with a plot of the time-dependent grade. The remainder of this section provides 

additional detail on these steps. 

In the initial step, the system records examples of task behavior. The examples may include both good 

and bad behavior performed by either students or subjects matter experts. Examples may be obtained 

by performing exercises on the target simulator or within a relevant proxy environment. However, a 

subject matter expert must accurately grade the examples to provide AEMASE with points of reference 

in its comparisons to student behaviors during evaluation. After acquiring graded example behaviors, 

the system applies machine learning algorithms to create the behavior model. An appropriate learning 

algorithm must be selected for each performance metric, depending on the type and amount of 

example data available, such that the resulting model generalizes assessments of the observed 

behaviors to novel student behaviors. We have implemented a suite of machine learning algorithms 

(e.g. neural networks, instance based/ nearest neighbor algorithms, support vector machines, linear 

regression, rule induction) and cross-validation tests to determine which algorithm makes the most 

accurate predictions for each metric. Finally, the system uses the learned behavior model to assess 

student behaviors. As each student executes a simulated training scenario, his or her behavior is 

compared to the model for each performance metric. The model determines whether student behavior 



is more similar to good or bad behavior from its knowledge base, and helps to identify and target 

training to individual deficiencies. Initially, the knowledge base is sparse, and incorrect assessments may 

be common. However, the instructor may override incorrect assessments. The model learns from this 

interaction and improves over time. For the research described here, we used AEMASE as a tool for after 

action reviews (See Figure 1), although the system could also be used to provide students with feedback 

throughout a training exercise.  

 

Figure 1. Debrief Tool With Automated Event Flagging. The debrief tool displays a video replay of the 

operator console (similar to this map display), and a timeline of events suggested by AEMASE for 

discussion during debrief. The tool also includes visualizations of entity movement over time. 

 

For training Naval Flight Officers, we used two basic types of AEMASE metrics. The first type of AEMASE 

metric is Context Recognition, which assesses whether the student is maintaining the tactical situation 

within norms established by previous expert demonstrations. This is done by monitoring the values of 

one or more continuous metrics (e.g. positions, ranges, headings, fuel load, etc). Unexpected 

combinations of values indicate the student may not know what to do, or may be losing control of the 

situation. The Fleet Protection metric described below is a simple (one-metric) example. 

The second type of AEMASE metric is Sequence Recognition, which assesses whether certain sequences 

of events provoke the expected sequence of responses. An example is Labeling Neutral Entities; a set of 

events (appearance of a radar track, detection of certain RF emissions) should lead to specific actions by 

the subject (labeling the track as a non-combatant). Any failure of the student to complete the sequence 

within a time limit (determined by modeling expert response times) is flagged for review. 



AEMASE Automated Performance Assessment Accuracy 
Establishing the validity of automated assessments requires studies in a realistic training environment, 

rather than just a simple laboratory task.  E2 operators are trained and tested on several different 

simulators ranging from a part-task computer-based training (CBT) system that runs on a single PC, to 

the high-end E2 WST system which faithfully replicates most aspects of E2 operations (ranging from the 

physical controls to system fault diagnosis and recovery) and requires a team of instructors and 

operators to conduct training.  For this study we used the E-2 Distributed Readiness Trainer (E2EDRT), a 

medium-fidelity trainer which presents students with the same mission software used on the E2 aircraft.  

Multiple instructors are needed to evaluate simulation training and sessions can last hours at a time.  

Automated assessment of E2 operator performance in these sessions would greatly reduce instructor 

workload and would increase overall efficiency. 

Participants 
Twelve employees from Sandia National Laboratories volunteered to participate in the experiment.  The 

participants met certain required criteria for the experiment which reflected the requirements for an 

entry-level E2 Hawkeye operator.  In addition, two former E2 Hawkeye operators served as subject 

matter experts (SME’s). 

Materials 
Materials included an E2 Deployable Readiness Trainer (EDRT) simulator that was obtained from the 

Naval Air Systems Command’s Manned Flight Simulator organization.  The Joint Semi-Automated Forces 

(JSAF) simulation software was used to create and drive the training and testing scenarios.   

Procedures 
The participants were recruited via an advertisement and those who responded positively and met the 

required criteria were included in the study.  The participants were scheduled for an initial all-day 

training session in which a former E2 Hawkeye Naval Flight Officer provided a tutorial on E2 operations 

emphasizing the basic radar systems task that would be the subject of the experiment.  The participants 

were also asked to sign an informed consent.  After the initial training session, the participants were 

scheduled for seven additional training sessions.  The participants were lead through the sessions in the 

same order.  Once they had finished the training sessions, the participants completed two testing 

sessions.  The participants completed the seven training and two testing sessions individually. 

Training Sessions 
The first five sessions consisted of additional training sessions designed to teach the participants the 

basic operations of the E2 radar system in depth on the E2EDRT.  For each session, the experimenters 

first demonstrated the proximate operation(s) on the E2EDRT and then the participant was asked to 

perform the operation(s) in scaled down, yet realistic, simulations.  Since all five of these sessions were 

for training purposes, the experimenters were available to answer questions.  At the end of each 

training session, the participants filled out a questionnaire indicating their understanding of the 

operation(s) on the preceding training session.  At the end of the fifth scenario, the participants 



completed a questionnaire assessing their knowledge of all of the operations learned in the training 

sessions. 

Testing Sessions 
The last two sessions were testing sessions in which the participants were assessed on their knowledge 

of the operations and tactics covered in the five training sessions.  The participants completed these 

more difficult simulations without the help of the experimenters.  At the end of each testing session, the 

participants were asked to complete a questionnaire which queried their confidence in their 

performance on the preceding test scenario. 

Metrics 
Based on guidance from the SMEs, three metrics were developed which were used to grade the 

participants’ performance in the testing sessions.   

Fleet Protection - Participants were instructed to prevent non-friendly entities from nearing the carrier 

group.  The amount of time the non-friendly entities were within a pre-specified proximity of the carrier 

group was assessed.   

Labeling Neutral Entities - Participants were instructed to promptly and appropriately label any neutral 

entity that appeared on the radar scope.  The latency with which the participants took to label these 

entities was assessed. 

Battlespace Management - Participants were instructed to effectively manage their air assets as the 

battle space evolved during the scenario.  This included re-positioning CAP (Combat Air Patrol) stations 

so that friendly airspace would not be violated.   

Assessments 

Manual Assessments 

Two trained experimenters independently reviewed video recordings of each of the testing scenarios for 

all participants.  The experimenters graded the participants’ performance on the three metrics for the 

two testing scenarios.  For each metric, the two experimenters specified instances of good and instances 

poor student performance.  These instances formed subsets of manual assessment data that were used 

in training the AEMASE automated performance measures 

Automated Assessments 

The participant performance on the two testing scenarios was assessed by AEMASE.  AEMASE used the 

good and poor instances indentified by the two experimenters as base examples from which to assess 

participant performance. 

Results 
The manual assessments and the automated assessments were compared for each of the three metrics. 



Fleet Protection 

Manual assessment was based on the amount of time the non-friendly fighters spent within too close of 

a proximity to the carrier group.  The inter-rater reliability between the two experimenters was 99%.  

The automated assessment used a proxy measure, which consisted of the distance between the carrier 

group and the closest non-friendly asset.  The results indicate a 100% agreement between the 

automated and manual assessments in terms of identification of unsatisfactory student performance 

(i.e., periods in which students allowed non-friendly assets to get too close to the carrier group). 

Labeling Neutral Entities 

Manual assessment was based on reviewing the time-stamped recording of when the neutral entities 

were labeled.  The inter-rater reliability between the two experimenters was 94%.  The automated 

assessment was based on the analysis of network messages from the mission computer.  The results 

indicate a 95% agreement between the automated and manual assessment for correct labeling of the 

neutral entities. 

Battlespace Management 

Manual assessment was based on the time and accuracy with which the CAP stations were re-

positioned.  The inter-rater reliability between the two experimenters was 99%.  The automated 

assessment was based on post-hoc analysis of radio communications.  Results indicate an 83% 

agreement between the automated and manual assessment. 

AEMASE After-Action Debrief Utility 
A significant cost in simulation-based training is the time demands on human instructors who monitor  

student actions and provide corrective feedback. The work presented here focuses on U.S. Navy training 

of Naval Flight Officers for the E-2-Hawkeye aircraft using a high-fidelity simulator. The three flight 

officers must learn to detect, track, and identify all assets, such as aircraft, and to provide 

communication among the commanding officers and all friendly assets. This currently requires a 

separate instructor to observe each student within the context of team performance and provide 

instruction based on observed misunderstandings, inefficient task execution, and ineffective or 

inappropriate actions. Such individualized instruction is labor intensive and contributes to high training 

costs. The purpose of this study was therefore to determine whether a group given verbal feedback 

from an instructor on their performance using an AEMASE-based debrief tool would outperform a group 

given verbal feedback alone.  

Participants 
Volunteer civilian employees were recruited via advertisement. All twenty-two participants met criteria 

for the experiment that reflected the requirements for an entry-level E-2 Hawkeye operator. The 

participants were both men and women and were between the ages of 20 and 28. The participants were 

split into two groups: a control group (N=12) and a debrief group (N=10). Two experienced E-2 Hawkeye 

Naval Flight Officers served as subject matter experts. 



Materials 
The materials and equipment used in this study were the same as that employed for the previous study.  

In particular, this included the E2EDRT and JSAF simulation exercises.  

Procedure 
The participants provided informed consent and were then scheduled for an initial eight-hour training 

session. Here, an E-2 Hawkeye Naval Flight Officer provided a tutorial on E-2 operations emphasizing the 

basic radar systems task that would be the subject of the experiment. Following this initial session, the 

participants were scheduled individually for five simulation-based training sessions. All participants were 

led through these sessions in the same order. After finishing the training sessions, the participants 

individually completed two testing sessions. Two trained experimenters graded each participant’s 

performance and performance was compared between the two groups. 

Training Sessions 

The five simulation-based training sessions were designed by an E-2 subject matter expert to teach the 

basic operations of the E-2 radar system on the simulator. The topics included simulator familiarization, 

check-in procedures, and managing air assets, managing surface assets and integration of air and 

surface pictures in complex tactical scenarios. For each session, the experimenters first demonstrated 

the proximate operation(s) on the simulator, after which the participant was asked to perform the 

operation(s) in scaled down, yet realistic, simulations. Since all five of these sessions were for training 

purposes, the experimenters were available to answer questions. Each training session lasted 

approximately 1.5 hours. 

For the control group, the instructor gave participants real-time, verbal feedback of their training 

session performance deficiencies. For the debrief group, the instructor used a debrief tool featuring 

graphical depictions (e.g., timeline and occupancy maps derived by AEMASE) of participants’ 

performance in addition to real-time, verbal feedback. The instructor was given sufficient training on 

how to use the debrief tool before the experiment started. 

Testing Session 

The last two sessions were testing sessions in which the participants were assessed on their knowledge 

of the operations and tactics covered in the five training sessions. The participants completed these 

more difficult simulations without the help of the experimenters. Each testing scenario lasted about 1 

hour. 

Metrics 
The selected metrics correspond to a subset of those used by the Navy in training Naval Flight Officers, 

and included fleet protection, labeling of neutral entities, and battlespace management. 

Fleet Protection 

Participants were instructed to prevent non-friendly entities from nearing the carrier group. 

Performance was assessed based on the latency to commit friendly fighters to enemy fighters as they 

approached the carrier group. During training, participants were given feedback regarding how quickly 



they committed friendly fighters to non-friendly entities entering the battlespace. For those in the 

debrief condition, the Debrief tool was used to playback the scenario (during training) and participants 

were shown their performance. 

Labeling Neutral Entities 

Participants were instructed to label any neutral entity that appeared on the radar scope promptly and 

appropriately. This required a high degree of situational awareness due to the large number of radar 

tracks. The complexity of a scenario also prompted subjects to fixate on a small portion of the 

battlespace.  The accuracy and latency with which the participants labeled these entities was assessed. 

During training, participants were given feedback regarding how quickly and accurately they labeled 

neutral entities. For those in the debrief condition, the Debrief tool was used to playback the scenario in 

order to point out the participants’ mistakes. 

Battlespace Management 

In one test scenario, the student was instructed to re-task fighter aircraft away from the initial combat 

air patrol station. Moving the fighters created a gap in air defenses, possibly allowing an incursion into 

protected air space as shown in Figure 2. The student was expected to notice this vulnerability and re-

assign other fighter assets to fill the gap. 

 

Figure 2: Battlespace Management. In this battle problem, Fighter 1 is re-assigned to the East, leaving a 

gap in air defenses. The student should move Fighters 2 and 3 to fill the gap; otherwise, enemy Fighter 4 

may penetrate the defenses. 

At this time, AEMASE could not recognize speech from radio calls, so the automated assessment was 

based on analysis of readily available simulation data, such as the positions of friendly and enemy 

fighters over the course of the scenario. One method used to represent this data was an Occupancy 

Grid, shown in Figure 3. The battlespace was divided into a grid and the total amount of time spent in 

each grid cell by friendly and enemy fighters was computed, resulting in two matrices of time-weighted 

values. This approach is more informative than simple “snail trails” left behind by each entity because it 

captures information about how much time an entity spends at a location. 



During training, participants were given feedback regarding whether or not they correctly re-tasked 

friendly fighters. Those in the debrief group were also shown how their AEMASE Occupancy Grid 

differed from an expert’s Occupancy Grid (Figure 3). 

  

Figure 3: Occupancy Grids. Blue and red tracks show the paths of friendly and opposing forces, 

respectively. On the left, friendly forces were pre-positioned correctly and repelled the incursion. On the 

right, gaps in defenses allowed the penetration of protected airspace. 

Results 
The first metric concerned fleet protection.  In this case, students were evaluated with regard to their 

allowing enemy aircraft to approach the carrier group, and specifically, the timeliness with which 

subjects committed friendly aircraft to intercept hostile aircraft posing a threat to the carrier group.  As 

illustrated in Figure 4, subjects in the debrief condition performed significantly better than those in the 

control group (t=2.03, p<0.05).  On average, these subjects executed radio calls committing aircraft prior 

to hostile aircraft penetrating the commit line, whereas the control group, on average, did not execute 

radio calls until after hostile aircraft had passed the commit line. 

 

Figure 4. Subjects trained using the AEMASE debrief tool executed radio calls committing friendly air 

assets to intercept hostile aircraft posing a threat to the carrier group significantly earlier than subjects 

in the control group. 

 

The second metric involved the timing and accuracy of labeling commercial aircraft.  Subjects trained 

using the AEMASE after-action review labeled aircraft significantly sooner (t=1.69, p<0.05) and more 



accurately (t=1.87, p<0.05) than subjects in the control group (See Figure 5).  It is emphasized that 

performance was superior for both speed and accuracy, implying that subjects had an overall better 

appreciation of the requirements of the task and situation awareness. 

 

Figure 5. Subjects trained using the AEMASE debrief tool labeled commercial aircraft sooner and more 

accurately than subjects in the control group. 

 

The third metric, focused on battlespace management, and a specific aspect of asset management 

whereby students must recognize a gap in their air defenses and re-position Combat Air Patrols 

accordingly.  There was no difference between the experimental and control group for this metric, and 

in actuality, only three of the twenty-two subjects performed this tactic correctly.  In retrospect, it was 

concluded that this tactic was conceptually too advanced given the limited training subjects received. 

In addition to the three planned comparisons, a fourth metric considered the timeliness with which 

subjects informed the warfare commander after receiving reports that enemy aircraft had been shot 

down.  Subjects trained with the AEMASE after-action review reported kills significantly sooner (t=2.66, 

p< 0.005) than subjects in the control group (See Figure 6).   

 

Figure 6. Subjects trained with the AEMASE debrief tool informed the warfare commander significantly 

sooner after receiving reports that enemy aircraft had been shot down. 



Automated Assessment of Team Performance 
Initial implementations of AEMASE focused on training individual skills.  A primary research objective 

has been to extend these capabilities to enable automated performance assessments for teams.  Per 

guidance from Navy representatives, the Team Dimension Training (TDT) paradigm was adopted as a 

conceptual model of teamwork from which metrics could be derived.  A challenge with automated 

performance assessment is that data for metrics must be available within the system, or attainable 

through additional instrumentation.  This consideration has significantly constrained the potential 

metrics achievable with the E-2 Enhanced Deployable Readiness Trainer, given the requisite data for 

most measures of teamwork is unavailable.  Consequently, attention in developing team metrics has 

been focused on speech communications and labeling of entities. 

E2 subject matter experts identified radio communications as a critical aspect of E-2 training.  This poses 

a challenge for automated performance assessment because current technologies for automated 

speech recognition and natural language processing have limited capabilities.  Rather than attempting to 

solve the well-studied problem of accurate speech recognition, an approach was employed that 

combined approximate speech recognition with tactical context recognition.  For example, if an allied 

fighter is intercepting an enemy fighter, the E-2 NFO should use appropriate TACAIC terminology to 

enhance the situational awareness of the allied aircraft.  Without assuming perfect speech-to-text 

conversion, it may still be possible to determine when an air engagement is taking place, and whether 

the NFO is using TACAIC terminology.  The first step in this research was to identify the best 

commercially available voice technologies. 

There are many factors which contribute to the contextual appropriateness of speech communications, 

including both non-linguistic (e.g., duration and frequency of utterances) and linguistic factors. Since 

perhaps the most important linguistic factor is the category of utterance (e.g. ABCC, TACAIC) (that is, 

was the category of utterance appropriate at the time?), our basic approach to evaluation was to 

consider voice recognition as part of a larger system in which the ultimate metric is the categorization 

accuracy. This contrasts with an approach which considers the number or percentage of words correctly 

recognized; the latter approach fails to take into account that consistent misrecognition of a word or 

phrase may have no negative impact on the categorization of the utterance. The basic architecture 

envisaged is depicted in Figure 7 below.  

 

 Figure 7. Proposed architecture employing commercial speech recognition as a basis for categorizing 

speech utterances for automated performance assessment. 



  

For speech-to-text, a survey of 18 open-source and commercial off-the-shelf voice technology systems 

was conducted.  A number were quickly eliminated for reasons including domain specificity (e.g. 

exclusively for medical industry) and vendor viability (e.g. product line had been discontinued).  After 

down-selecting, we were left with two packages: Microsoft’s Speech API 5.1 and Nuance’s Dragon 

NaturallySpeaking.  We found no statistically significant difference between the categorization accuracy 

for the two systems: 56% for Microsoft versus 58% for Nuance. Note, these percentages reflect accuracy 

in placing utterances in one of seven categories (See Table 1). For this assessment, software was 

deployed in speaker-independent mode (i.e. no individualized training), the grammar used was based on 

word probabilities, and categorization was based on whole utterances and recognition as opposed to 

hypothesized speech.  Other approaches were examined that included alternative grammars and 

different settings within grammars regarding the grammar rules and phrase probabilities, but these 

approaches were less effective with categorization performance ranging between 0-38%.  Figure 8 

summarizes the results for each category of utterances showing that accuracy varied substantially across 

the categories.  The baseline accuracy is about 15%, so it is clear that incorporating either SAPI 5.1 or 

Dragon into the larger system could be a viable approach. 

 

Table 1. Categories of speech utterances identified for E-2 Hawkeye NFO operations and used in 

assessing categorization accuracy of commercial speech recognition. 

– Administrative check-in of assets, e.g. “Hammer flight, vector to Cap station alpha, 324, 

83” 

–  TACAIC, “Snapper, group burst 295, 36, twenty-six thousand, track south, bandit, 

Hammer commit”  

–  Communications with AW, e.g. “AW, T, Hammer flight committed track number 4701”  

–  Communications with AZ, e.g. “AZ, T, track number 4715 identified as hostile surface 

action group”   

–  SAR, e.g. “Sierra, be advised, your pony requested to conduct search and rescue 

operation for downed aircrew of Hammer 44.  Say status your pony”  

–  ABC2, e.g. . “Hammer 41, copy airborne from Bagram, take angels 35, vector to stack 

045, 95” 

– recognized, as opposed to hypothesized speech 
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Figure 8. Combined accuracy for each category of utterance, with the likelihood of correct categorization 

by chance being 15%. 

 

The next step in employing speech-based communications as a basis for automated performance 

assessment involved analysis comparing the speech patterns of expert and novice teams. In this study, 

two two-person teams consisting of expert E-2 NFOs and two two-person teams consisting of novices 

(i.e. test subjects from the previously discussed project that had attained a modest level of individual 

proficiency completing scenarios on the E2EDRT) completed scenarios on the E2EDRT. The speech of 

both expert and novice teams were recorded. We hypothesized that the language of the teams would 

be useful in discriminating between experts and novices.  This approach was inspired by earlier research 

in which TF/IDF (term-frequency/inverse-document-frequency) with Latent Semantic Analysis was highly 

effective in automated essay grading, despite disregarding the order of word usage (Foltz, Laham & 

Landauer, 1999). Our primary concern concerned whether tf/idf would be effective given the limited 

accuracy of automated speech recognition.  

In the development of speech-based team performance measures, it was necessary to work with off-

the-shelf commercial speech recognition software, which our benchmark testing indicated would only 

provide an approximately 60% level of accuracy for speech-to-text transcription.  Consequently, it was 

necessary to select metrics that were suitable given the available capabilities of the speech recognition 

software.  Based on interaction with subject matter experts (reservist E-2 NFOs), three aspects of team 

communication were identified: (1) when a team communicates, (2) what they communicate, and (3) 

how they communicate. By studying when NFO's communicate, the responsiveness of the team to 

external events and information flow within the team may be assessed. However, what NFO's 

communicate is just as important — each utterance should transmit important information 

communicated in a clear and understandable manner.  Finally, the phonetic characteristics of the 

communication (e.g., tone and rhythm) play an important role in conveying cues such as urgency or 

importance.  



It was found that experts and novices differ significantly in how often they communicate, with expert 

teams making many fewer radio calls of less duration than both novice teams (Figure 9). This finding is 

consistent with the notion that given limited radio bandwidth, experts learn to conserve bandwidth by 

communicating only when it is necessary and communicating in a concise manner.   

 

Figure 9. The total duration of radio calls for expert (blue and purple lines) and novice (red and green 

lines) for E-2 NFO teams across the sixteen test sessions. 

 

Next, the semantic content of utterances was considered. For two NFO's to effectively communicate 

they must share a common language. Using speech-to-text conversion, the resulting text documents 

were compared using term frequency-inverse document frequency (tf-idf) methods.  As shown in Figure 

10, for 7 of 8 subjects, the two most similar subjects (using cosine-similarity of term vectors) were in the 

same category of expertise (novice/expert). This means that the semantic content of utterances by 

experts was more similar to other experts, than novices, and vice versa.    

 

Figure 10. Semantic analysis of radio communications showed experts were more similar to other 

experts, and novices to other novices (green indicates the subject that each subject had the greatest 

similarity). 

Experts 

Novices 



More detailed analysis revealed that there was a distinct difference in the word usage for experts as 

compared to novices.  In general, there was a specific vocabulary used by both expert and novice teams, 

yet the experts showed little variance from this vocabulary, as compared to the novices.  One 

observation concerned the use of filler words (e.g. “um,” “ er,” etc.)  As shown in Table 2, the prevalence 

of filler words was much greater for novice than for expert teams.  This finding is not surprising given 

that filler words serve a purpose in the turn-taking that occurs with verbal discourse.  By using a filler 

word when an individual needs time to formulate the words they want to speak, they sustain their turn, 

buying time to search memory and construct their utterance. 

Finally, initial analysis indicated that experts may be distinguished on the basis of phonetic properties of 

their verbal communications (e.g. situationally-appropriate urgency).   A detailed analysis was 

undertaken using frequency components of speech with particular attention focused on periods in the 

experimental test scenario immediately preceding and following commencement of hostilities (i.e. the 

scenario went “hot”).  These analyses failed to identify characteristics that would allow the experts to be 

distinguished from the novices. 

 

Table 2. The frequency of filler words during an illustrative scenario demonstrates the greater reliance 

on filler words by novice teams. 

 Experts  Novices  

ah  1  6  

er  4  8  

like  5  9  

uh  112  307  

um  5  28  



Based on this research, it was concluded that speech-based measures provide a viable method for 

distinguishing expert from novice teams of E-2 NFOs.  While the quality of speech communications 

represent only one facet of an individual’s capacity to work effectively within the context of a team, as 

emphasized within the Navy’s Team Dimension Training (TDT), speech quality is vital for effective team 

performance.   

Applied as a basis for targeted training through AEMASE, two measures emerge that would be 

informative during after-action debrief.  The first would involve flagging periods in which the frequency 

and duration of student utterances deviate from the predictions of an expert model.  This would allow 

instructors to identify situations in which students either communicate too little or too much.  One 

example would involve air-to-air engagements during which fighter pilots expect a continuous update 

from the E-2 NFO concerning the hostile forces.  An AEMASE implementation may be envisioned in 

which instructors are provided flags on the AEMASE timeline indicating points at which the student NFO 

did not provide pilots the desired frequency of verbal updates. 

Second, an implementation may be envisioned that flags periods in which student NFOs utter an 

excessive frequency of filler words.  Given a key facet of E-2 NFO training involves teaching students the 

appropriate vernacular, this measure would indicate to instructors points at which students understand 

that they need to say something, but are unsure of the correct words. 

AEMASE After-Action Debrief 
The product of this project to be delivered for transition to the Naval aviation enterprise is the AEMASE 

after-action debrief.  This software product consists of an after-action review capability featuring 

AEMASE automated performance assessments.  In operation, as students complete an exercise, the 

exercise will be recorded.  During this time, instructors may insert flags on a timeline to signify events 

for consideration during after-action review.  Once the exercise has completed, the timeline will be 

populated by both the flags that instructors have manually entered and flags automatically inserted by 

AEMASE.  The instructor may then use the timeline to navigate to different points within the recorded 

exercise and playback periods of interest. 

The initial implementation of the AEMASE after-action debrief will occur as an upgrade to the E2EDRT.  

This will occur through integration of the AEMASE after-action debrief with the Navy’s Common 

Distributed Mission Training Systems (CDMTS).  This integration was accomplished and development 

undertaken to provide the features deemed essential by fleet representatives for an effective E-2 after-

action debrief.  Key facets of this development included the following. 

Data Recording 
Recording consists of video capture, voice capture, HLA network data capture, operational flight 

program capture, and system integration of these components.   

 



Video Capture records the students’ ACIS (Advanced Control Indicator Set) screens.  Video capture was 

implemented using the RGB DSx 200 CODEC (compressor/decompressor) devices which create an H.264 

compressed video stream and send it over the local network to the recording computer. 

Voice Capture records the students’ radio calls.  These are used during replay (for students to hear their 

own performance) and for voice-based metrics as documented above.  For voice capture, network data 

traffic from the ASTi radio simulator used in the EDRT is recorded.  Capturing this data required protocol 

conversion from DIS (Distributed Interactive Simulation) to HLA (High-Level Architecture).  This is done 

using the JLVCDT (Joint Live/Virtual/Constructive Data Translator) software which we configured with 

assistance from Alion Science and Technology Advanced Modeling & Simulation Technologies 

Operation.  The Sandia-developed HLA Data Logger was then upgraded to receive information from 

JLVCDT without re-sending it to the NCTE HLA federation by creating a private HLA federation that exists 

only within the AEMASE Data Logging computer itself.  

HLA Network Data Capture was enhanced to avoid requesting any unnecessary information from the 

NCTE network, which could increase network traffic.  Sandia software was modified so it only requests 

the same information as the EDRT.   This was non-trivial because the EDRT only requests information 

within a specified radius of the simulated E-2C entity, which moves over time.  Thus our logging software 

must communicate with the EDRT during the exercise to update its DDM subscriptions.  This was 

accomplished through a shared memory mechanism used by the EDRT, which was implemented in the 

Sandia logging software.   

Operational Flight Program Capture records the student actions on the training system, such as labeling 

radar tracks as friendly, neutral, hostile, etc.  This is done by monitoring the network messages between 

components of the computer system aboard the E-2C (and in the EDRT).  This was implemented by 

configuring the CISCO router in the EDRT to include the AEMASE recording computer in the network 

where the mission computer sends information to the ACIS terminals.   

System Integration consisted of configuring a new AEMASE Data Capture Host for the EDRT, creating a 

user-friendly GUI to control all of these recording components, and testing to verify correct operation in 

a simulated operational setting.  Three rounds of tests were performed in conjunction with the Navy 

Manned Flight Simulator organization on their E2EDRT to verify the data capture functionality.  These 

tests were successful and confirmed that the Sandia components did not degrade the operation of the 

E2EDRT or request extra information from the NCTE. 

Replay 
The main replay components are Video Replay, the Timeline display, and CDMTS for displaying HLA data 

and playing radio calls.  These are integrated by software that synchronized playback among the 

components during debrief. 

 



The MPlayer was adapted for video replay.  This is a video player available for both Windows and Linux 

computers.  It was chosen because it correctly replays videos from the RGB Spectrum DSx200 codec, and 

because it can be controlled for synchronized replay. 

The Timeline display, which was already used in CDMTS, was updated to display scenario events from 

the AEMASE performance measurement database.  This display shows manual annotations created by 

the instructor during the exercise as well as automated annotations created by AEMASE.  Editing an 

annotation during debrief updates the annotation in both the Timeline display and in CDMTS (which has 

an embedded timeline display).   

CDMTS is used by the AEMASE E2EDRT Debrief to replay HLA data so the user can inspect the recorded 

state of all simulation entities.  A plug-in to CDMTS was developed which allowed use of the EDRT 

Debrief Synchronization Library.  The other major CDMTS enhancement was a user interface for 

controlling replay of the recorded radio calls from the EDRT.  This interface was non-trivial because the 

E2EDRT simulates 6 or more radios (depending on configuration). 

Operational Test and Evaluation 
The initial operational use of the AEMASE debrief system will be to support the EDRT in Fleet Synthetic 

Training (FST) events.  These are large-scale networked events where the EDRT is connected to the NCTE 

(Navy Continuous Training Environment).  Access to the NCTE is strictly limited, and there is no NCTE 

connectivity at Sandia Labs, so integration and test events were conducted offsite.  We established a 

two-step procedure: first, initial testing at Manned Flight Simulator (MFS) at NAS Patuxent River, then 

final testing at NS Norfolk on an operational EDRT.  Although MFS is not NCTE-capable, initial testing 

there allowed the government engineering team to verify the software, to reduce the technical risk of 

connecting new software to the NCTE. 

The first round of testing was for the data recording software.  (Development of the replay and analysis 

software could not be completed until after this sample data was collected for requirements 

development and testing).  The Navy Warfare Development Command (NWDC) took the leading role in 

developing the test plan for this test.  The test plan is included as Appendix I.  The primary technical risk 

posed to the NCTE by the recording software was that the HLA logger might subscribe to all HLA 

messages instead of just the ones needed for the EDRT, which could overload the NCTE and disrupt an 

entire large-scale exercise.  During the integration and test event we configured the HLA logger to 

capture only the necessary data, and NWDC personnel verified that running the HLA logger in this 

configuration placed no additional network load on the NCTE.  The other main objective was to verify 

that all data required for replay was captured.  The main issues were: 

 Configuring the Logging software to capture all pertinent HLA and DIS network traffic 

 Load testing the logger to verify it can handle the number of entities and update rate of the 

NCTE 

 Endurance testing the logger to verify it can capture a 4 hour scenario 



Several technical issues were found and corrected during the integration.  After this, the test was 

successful. 

The second (and final) round of testing will be to test the replay and analytic capabilities of the system, 

for which development has continued, enabled by the test data gathered in the first round.  The second 

round of testing is planned for early 2012.  The main challenge in conducting this testing is being granted 

access to the NCTE, which is a production environment in heavy use; thus opportunities for integration 

and test are relatively rare. 

Conclusion 
While the final steps leading to product transition are still underway, this project has successfully 

accomplished its stated objectives.  In particular, research and development was undertaken to mature 

the Sandia AEMASE capability for automated performance assessment to the point that it could be 

incorporated within an operational simulation-based training system, specifically the E2EDRT.  This 

research and development involved experimental studies that empirically established the accuracy of 

the AEMASE automated performance measures and demonstrated quantifiable improvements in 

training effectiveness.  Additionally research quantified the performance achievable with off-the-shelf, 

readily available voice recognition software and demonstrated mechanisms by which this technology 

could be effectively employed as a basis for automated performance measures.  Based on the results of 

this project, a capability has been developed that should serve the Navy by both reducing the costs of 

system development, while lessening manpower costs associated with Naval aviation training. 
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Integration Plan Scope 

This Integration Plan provides the roadmap in evaluating the Automated Expert Modeling and Student 
Evaluation (AEMASE) module data capture interoperability and operational capabilities in support to the 
E-2C Deployable Readiness Trainer (EDRT) in a Navy Continuous Training Environment (NCTE) 
simulated Fleet Synthetic Training (FST) environment. Plan identifies the test resources, test 
environment, and test objectives to determine the level of NCTE compliance. Test Objectives will be 
accomplished by performing approved verification and validation methods as defined per test objective. 
Test objectives are designed to verify and identify capabilities and limitations of the tested application. 
Results of this test may identify further interoperability development requirements resulting in further 
integration testing. From here on, the EDRT AEMASE will be referred to as the data logger. Stimulation of 
simulation data will be performed using a Navy Warfare Development Command (NWDC) release version 
of Joint Semi Automated Forces (JSAF) approved for FST.  

Referenced Documents 

AEMASE Fleet Briefing Jul 2011 

Test Objectives Summary 

Basic Connectivity  

Check that all training system devices are configured as per approved architecture. Verify proper 
indications for all network connections for all data streams to be tested (i.e. SIM, Tactical Voice, and 
Tactical Data Link). Verify data logger is configuration and that it properly joins federation.  

Data Distribution Management (DDM) 

Verify that data logger only subscribes to same DDM groups as training system and does not subscribe to 
DDM groups outside training systems interest.  
 

Data Logging 

Verify the data logger capabilities and limitations. Verify that data logger records all HLA tracks, simulated 
radio calls and radar tracks.  

Schedule 

Milestone Date 

Kickoff meeting TBD 

Test Readiness Review meeting TBD 

EDRT AEMASE Preliminary Inspection 31 Aug – 2 Sep 

  

Resources and Configurations 

Software Items 

Table 5.1       Software 

Software Version Purpose Provider Location 



Table 5.1       Software 

Software Version Purpose Provider Location 

JSAF 
JSAF v4.1.3.7 or 
subsequent release  

NCTE Core 
Simulation 

NWDC NCTE Tier1 

SAR SAR RTI v2.1.2 
Simulation Aware 
Router 

NWDC 
NCTE Tier 1 
and Tier 3 
nodes 

Network 
Monitoring 
Tools 

IP Traf, WireShark 
Verify network 
network 

NWDC  
NCTE Tier1 
and Tier 3 
SAR Box 

JBUS 
 v4.1.3.7 or subsequent 
release 

Provide 
HLA/TADIL 
interface to GWM 
(Tier 1) 
 

NWDC NCTE Tier1  

Training 
System 

EDRT 
AEMASE 
Build/Version  

Article Under Test MFS 
EDRT Norfolk 
Tier 3  

Hardware Items 

Table 0-1 is a list of hardware items that may be needed during integration: 

Table 0-1 Hardware 

Hardware Version Purpose Provider Location 

Tier 1 Front 
End/Back 
Ends 
Machines 

Std NCTE RHEL 5 
image configured to 
support needed 
software (JSAF/JBUS) 

Core Sim Hardware NWDC 
NCTE TIER 
1 

NCTE Tier 3 
Node 

Tier 3A WAN/SAR equipment NCTE OPS VARIES 

GWM 
GM.020703.090508.171
0.REL 

Translates DIS into 
SIMPLE-J 

NCTE MTT 
NCTE TIER 
1 

Training 
System 

EDRT, AEMASE 
 

Article Under Test CAE VARIES 

DIS-VOIP 
Gateway 

 
DIS voice 
communications to 
VOIP protocol 

NCTE  
NCTE TIER 
1 



Federation Configuration Items 

Table 0-2 Simulation Configuration Items 

Simulation Technology NCTE 

HLA Federations 
 

NTF Federation - NTF x.x FED and OMT, NTF.rid*, fedex 
exercise specific name as defined in NTF.rid 
The NTF federation will be configured to support latest NTF 
release approved for FST use. 

 

Testing Architecture 

 

Table 0-3 EDRT SV-1 

 

 

 



Test Procedures 

Basic Connectivity 
Test Objectives: 
BC-1) Ping Connectivity – Can all training system devices be reached on NCTE Network? 
BC-2) Federation Verification – Are all training system federates in the federation? 
BC-3) Data Distribution Management – Are federates publishing/subscribing to correct routing space regions? 
BC-4) Tactical Data Link Connectivity – Is the trainer in Link? 
BC-5) Simulation Time Correlation – Does the training systems simulation time correlate with Zulu (UTC) time? 
 
Preconditions: 

 Tier 3 Node configured and operational  

 Trainer Firewall has been opened to allow ping operations 

 All federates are configured to Software Versions, Hardware, and Simulation Configuration Items in Table 0-1, Table 0-2 and Error! 
Reference source not found.  

 Training system access switch port connecting to NCTE enabled and configured to switch port access. 
 

Table 0-4 Basic Connectivity Objectives 
 

Step  
Test Method –  

Operator Action 
Expected Response Pass/Fail Comments/Data Recorded 

BC-1 
Ping all trainer devices. 
Trainer ping Tier 3 Host default gateway. 

Ping response Pass 
 

BC-2 
Verify trainer can join NTF federation (via NAVAIR DDM 
Proxy if applicable). 

All federates are in the same federation Pass  

BC-3 
Verify trainer base multicast publication and subscriptions 
via netstat/wireshark. 

Base Multicast groups should be within the 
range for fedex assigned as per RID 

Pass  

BC-4 
Verify training system is connected to the NCTE Gateway 
Manager.  

NCTE Gateway Manager shows green 
indication for connectivity. 

Pass 
Test limited to basic connectivity and 
verification of PPLI and track 
exchange 

BC-5 
Verify training system’s simulation time correlates with 
NCTE NTP server time in UTC/Zulu by marking several 
time points and object/interaction updates. 

Information matches between training system 
and NCTE Time Server 

Pass  

 

 



Data Distribution Management (DDM) 
Test Objectives: 
DDM-1) Verify data logger only subscribes to same DDM groups as training system 
DDM-2) Verify bandwidth to/from node is within specification with all training system devices operational with no degradation in 
performance. 
 
Pre-conditions: 

 Tier 1 has robust scenario representative of actual FST event. 
 

 
Table 0-5 Data Distribution Management 

 

Step  Test Method – Operator Action Expected Response Pass/Fail Comments/Data Recorded 

DDM-1 

Verify DDM subscriptions of Logger match those of the EDRT 
software by inspecting IP multicast groups joined 

EDRT and logger join the same multicast 
groups 

Pass 

Issue with JLCDT application 
when creating a private an adhoc 
fedex resolved by setting rid to 
use 1 MC group and interface to 
loopback  

DDM-2 

Verify Logger does not cause increased bandwidth usage by 
measuring bytes sent/received from the wide area network 
which executing a scenario first without, then with the Logger. 

Amount of network traffic is approximately 
equal with / without logger 

Pass 

Issue stated above did cause 
significant increase in network 
traffic but was reolved with above 
work around. 

 

 

 



Data Logging 
Test Objectives: 
DL-1) Verify data logger records all HLA tracks 
DL-2) Verify data logger records all simulated radio calls 
DL-3) Verify data logger records all simulated radar tracks 
 
Pre-conditions: 

 Tier 1 has robust scenario representative of actual FST event. 

 EDRT local network is configured to send radio traffic and mission computer data to logging host internal to EDRT. 
 

 
Table 0-6 Data Distribution Management 

 

Step  Test Method – Operator Action Expected Response Pass/Fail Comments/Data Recorded 

DL-1 

Record scenario with the logger in two modes: 1) recording 
HLA entities 2) capturing only the statistics of the HLA entity 
updates (performance counters) to verify logger is not 
overwhelmed by the rate of updates received 

The number of entity updates recorded 
should equal the performance counters 
from non-recording mode. 

Pass 4 hour recording captured 

DL-2 

Run SQL query on recorded database to verify presence of 
radio calls. All simulated radio calls are recorded.  

Intercoms are not recorded. 
  

DL-3 

Examine Mission Computer logfile on capture node to verify 
track information is captured. 

All track updates are captured. 

[Sandia Note: 
this was 
subsequently 
verified]  

 

 

 

 

 



Testing Priority 

Test objectives are listed in an order for which they should be executed. Individual test steps within each 
objective however may be completed out of order and does not necessarily prevent completion of 
remaining test steps.  

Glossary/Acronym List 

AEMASE – Automated Expert Modeling and Student Evaluation 
DIS – Distributed Interactive Simulation 
DDM - Data Distribution Management 
EDRT – E-2C Deployable Readiness Trainer 
FOM – Federation Object Model 
FST – Fleet Synthetic Training 
GWM – Gateway Manager 
IOS – Instructor Operator System 
JSAF – Joint Semi Automated Forces 
NCTE – Navy Continuous Training Environment 
PVD – Plain View Display 
MCU – Multipoint Control Unit 
NCTE – Navy Continuous Trainer Environment  
NWDC – Navy Warfare Development Command 
NTF – Navy Training Federation 
NTP – Network Time Protocol 
SAR – Simulation Aware Router 
UTC – Coordinated Universal Time 
VoIP – Voice over Internet Protocol 

 


